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The large-scale organized structures of turbulent flow can be characterized 
quantitatively by a conditional eddy, given the local kinematic state of the flow as 
specified by the conditional average of u(x’,  t )  given the velocity and the deformation 
tensor at a point x :  (u(x ’ ,  t )  1 u ( x ,  t ) ,  d ( x ,  t ) ) .  By means of linear mean-square 
stochastic estimation, (u’ 1 u,  d )  is approximated in terms of the two-point spatial 
correlation tensor, and the conditional eddy is evaluated for arbitrary values of 
u ( x ,  t )  and d ( x ,  t ) ,  permitting study of the turbulent field for a wide range of local 
kinematic states. The linear estimate is applied to homogeneous turbulent shear flow 
data generated by direct numerical simulation. The joint velocity-deformation 
probability density function is used to obtain conditions corresponding to those 
events that contribute most to the Reynolds shear stress. The primary contributions 
to the second-quadrant and fourth-quadrant Reynolds-stress events in homogeneous 
shear flow come from flow induced through the ‘legs’ and close to  the ‘heads’ of 
upright and inverted ‘hairpins ’, respectively. 

The equation governing the joint probability density function of fuJu, dj is 
derived. It is shown that this equation contains (u’ 1 u,  d }  and that the equations for 
second-order closure can be derived from it. Closure requires approximation of 
(u‘ I u, d ) .  

1. Introduction 
The investigation of large-scale organized structures requires methods capable of 

detecting the structures and determining quantitatively properties such as geometry, 
energy content and contribution to turbulent transport. Ideally, the methods should 
also provide a measure of the frequency of occurrence of the organized structure and 
information that can be incorporated into a turbulence model in a reasonably 
straightforward way. The development of techniques for this purpose is a recurrent 
topic in the literature (Willmarth 1978; Cantwell 1981 ; Hussain 1983). Generally, 
quantitative techniques such as spatial correlation do not describe the coherent 
structures in a readily interpretable manner, while qualitative techniques such as 
flow visualization reveal the structure (at sufficiently low Reynolds number), but 
they do not provide enough quantitative information. The characteristic-eddy 
method (Bakewell & Lumley 1967; Lumley 1970, 1981) combines Lumley’s 
generalization of the Karhunen-Locve‘ expansion with a shot-noise model in which 
the flow field is decomposed into a set of randomly scattered deterministic eddies. It 
has been used recently to analyse flow structure in turbulent channel flow (Moin 
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1984). This approach is particularly useful when energy is concentrated in a few 
eigenmodes. However, the most common approach to coherent-structurc analysis is 
the conditional-averaging method (Antonia 1981). 

The general form of a conditional average is (g(u)  I E ) ,  where E is a conditional 
wen t  vector, g is any function, and u’ = u ( x ’ ,  t ) .  The evtmt E is usually vicwrcd as 
a detector of coherent structure, but since the properties of coherent structures are 
not known a priori, it is difficult to define reliable, unambiguous and unbiased 
detector events. The VITA event (Blackwelder & Kaplan 1976) and the quadrant- 
analysis events (Willmarth & Lu 1974) are used widely for the detection of bursts and 
high-Rcynolds-stress eddies. Each can be implementcd using time-series measure- 
mcnts of one or two velocity components a t  a single point. 

Recently, direct numerical simulations and large-eddy simulations of turbulence 
have been shown to be effective tools for the study of coherent structures in turbulent 
flows with geometrically simple boundaries (Moin & Kim 1985; Kim & Moin 1986). 
Conditional averages of the computed flows compare very favourably with 
experimental studies, indicating good simulation of the details of the turbulencc 
structures. A unique feature of computational data bases is the availability of full 
vector-field data, making i t  feasible to use three-dimensional vector-bascd con- 
ditional events, rather than the scalar or two-dimensional events imposed upon most 
experimental studies. Existing work with conditional averages based upon vector 
events suggests that  information contained in the vector appreciably enhances the 
capacity of the conditional average to dclineate structurc (Adrian 1978). 

The conditional eddics tlcfincd in Adrian (1975, 1979) use an event 

E, = u < U ( X ,  t )  < u+du ( 1 )  

that  confines the velocity vector u(n. t )  to a small window between u and u t d u ,  
where u is an arbitrary vector. The conditional average of U’ is written variously as 
(u(x ’ .  t )  1 u ( x ,  t ) ) ,  (u(x ’ ,  t )  1 ~ ( x ,  t )  = u ) ,  (u(x ’ .  t )  I u )  or (u(x’  t )  1 E,) .  

In isotropic. turbulence, rotational and rc1ffcction invariancc imply that (u’ I U ( X .  

t ) )  must be a vector ficld axisymmetric around u ( x ,  t )  (Adrian 1975). Estimates of 
this average using isotropic turbulence data reveal a vortex-ring structure whose axis 
of axisymmetry liesparallcl to u(x ,  t )  (Adrian 1979; Tung & Adrian 1980). Specifying 
the complete three-dimensional vector renders the vortex ring observable by 
selecting from the ensemble of isotropically oriented vortex rings only those 
structures with a common alignment. 

In  flows whose random structures are less random than isotropic turbulence the 
conditional eddies can produce accurate maps of the coherent structures without 
speeifjring the complete threc-dimcnsional vcctor. Studies using conditional events 
limited to two velocity components by Tung (1982) and Tung, Adrian & Jones (1987) 
in a plane shear layer, Hassan (1980) and Hassan, Jones & Adrian (1987) in turbulent 
pipe flow. and Chang, Adrian & Jones (1985) in the axisymmetric shear layer of a 
round jet each yielded csonditional eddics that agreed closely with the coherent 
structures observed by other methods. Even so, i t  is likely that specification of the 
third velocity component would have made the flow patterns more specific. 

The present paper deals with a generalization of the conditional-eddy concept in 
which the c3onditional evcnt is cxtcwdcd to includc a miidition on thc value, of thc 
deformation tensor 

aui 
d,(x. t )  = -. 

ax1 
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The conditional eddy becomes 

(3) 
where 

(4) 
Concurrent investigations of conditional averages using this event in the context of 
isotropic turbulence show that the specification of d significantly modifies the 
conditional flow fields, especially when the given values of u ( x ,  t )  are weak (Ditter 
1987 ; J. L. Ditter & R. J. Adrian 1988, paper in preparation). A simple case in which 
the flow at  x is dominated by the deformation tensor rather than the velocity occurs 
when x is a stagnation point of the velocity field. 

The motivation for defining the generalized event E,, derives from the elementary 
observation that the first-order kinematics at a point x are described by the local 
translation, as embodied in u(x, t ) ,  and the rotation and the rate of strain, the latter 
two being contained in the deformation tensor. Thus, specifying only the velocity 
u(x, t )  renders an incomplete description of the kinematic state of the fluid a t  (x, t ) ,  
corresponding to an average over all states of rotation and strain. 

We shall refer to the average in (3) as a 'conditional eddy given the local 
kinematics ', abbreviated to CELK. CELT eddies are defined as conditional eddies 
given the local translation, and CELD eddies are conditional on the local 
deformation. In  all cases, of course, the conditional eddy is a deterministic vector 
function of x' in three spatial dimensions. As will be shown in $ 2  this vector function 
has many properties similar to the velocity vector, such as obeying the equation of 
continuity. The conditional eddy depends upon u(x, t )  and d ( x ,  t )  parametrically. 
The statistical properties of CELK eddies and the probability-density-function 
equation governing their evolution will be presented in 9 2 .  

In $3  linear stochastic estimation will be applied to CELK eddies to find an 
approximation that can be evaluated for any combination of u- and d-values solely 
in terms of the two-point spatial correlation. This technique is a well-known 
procedure for estimating random variables (Papoulis 1984) ; its applicability to the 
estimation of conditional averages was first demonstrated by Adrian (1975, 1979) 
who applied it to conditional eddies given the velocities a t  one or more points. For 
isotropic turbulence the linear stochastic estimate given E,, has the particularly 
simple form 

when R,, is the two-point correlation tensor. 
Linear stochastic approximation simplifies enormously the task of evaluating 

CELK eddies, and it makes feasible evaluation for many different, values of u and 
d without performing different experiments. Indeed, it can be stated categorically 
that the evaluation of CELK eddies would not be possible without the im- 
plementation of stochastic estimation because the high dimensionality of the event 
Eu,d makes it impossible, practically, to find a large number of realizations that 
satisfy the event. Thus, the primary results in this paper are those concerning 
stochastically estimated CELK eddies, rather than the CELK eddies per se. Our 
discussion of the CELK eddies in $ 2  is, however, a necessary precursor, as it lays the 
foundations for interpreting the stochastic estimates kinetically, dynamically and 
statistically. 

In $4 linear stochastic estimation is applied to a numerical data base for 
homogeneous shear flow (Rogers & Moin 1987), and the propertes of thc coherent 
hairpin vortex structures found from this procedure arc discussed. 

&,d = {U < U(X, t )  < u+du, d < d(x, t )  < d+dd}. 

( u , ( x + r )  IW) = Rlt(4 %(X) <u;> 
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2. Conditional eddies given the local kinematics 
2.1. Properties 

In general, a conditional average is, in t’he lcast-mean-square error sense, the best 
nonlinear estimate of the quantity being averaged given the information contained 
in the event vector (Papoulis 1984). Specifically, the conditional average (u’ I u,  d )  
is the best estimate of u(x ’ )  given {u (x ) ,  d ( x ) }  in the sense that the mean-square 
error 

ei = ( [u ; - (u ; Iu ,  d)] ’ )  ( 5 )  

is minimized for each component, i = 1, 2, 3.  The average is over all possible values 
of thc paramebers u and d in tht: event Eu.d (see (4)). It is convenient to perform t.he 
usual decomposition of d into a rate-of-strain tensor and a rotation tensor : 

d. .  = e. .+[. .  a? a?’ (6) 

wherc 

and 

(7) 

and the vorticity vector o is related to the rotation tensor by 

(9) 0 .  = e.. 6 .  
t z jk  j k ‘  

Then (u’ 1 u, d )  is the best estimate of u(x‘,  t )  given the complete kinematic state 
of the fluid at x, as specificd by the translation U, thc rotation O ,  and the ratc-of- 
strain e. 

One of the primary difficulties in the study of coherent structures is the lack of a 
matjhematically precise definition of what, exactly, constitutes a coherent structure 
(Hussain 1983). This void lies at the root of the problem of defining proper detector 
events for conditional averages. In this regard, a substantial conceptual clarification 
is achieved if the conditional event is viewed not as detector, but solely as a 
statement of information about the flow at x. Then, the conditional average does not 
a priori correspond to a coherent structure. If a correspondence does exist, it must 
be demonstrated by a separate and direct comparison of the conditional average with 
physical realizations that are deemed to be coherent structures on independent 
grounds. 

To illustrate the logical necessity of distinguishing between a conditional average 
and the coherent structure, let us suppose that a flow field existed which possessed 
no structures that were judged to fit any of the prevailing definitions of a coherent 
structure. While coherent structure may not exist, it is certain for physically 
reasonable definitions of the event E that  the conditional average would exist, 
showing that the coherent,-structure concept is an independent entity. In fact, the 
conditional average (u’ I E )  will always define a non-zero vector function of x’, 
provided only that the velocity u’ and the conditional event E are statistically 
dependent. The possibility of statistical independence is precluded for conditional 
eddies based on the events E,, or EU,,  because, as x’ approaches x, u’ approaches u 
and au’/ax’ approaches d, implying that u’ can never be statistically independent 
of E,, or E,,d for sufficiently small Ix’-xl. Hence, conditional eddy fields, given E,,,, 
must exist for all turbulent JEows in some neighbourhood of x. This property distinguishes 
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the events E, and Eu,d from ad hoc events which may be highly corre‘ --ed with the 
velocity in one type of flow, but only weakly correlated in another. (For example, the 
quadrant-detector event of Willmarth & Lu (1972) works well in shear flows, but it 
would have little success in flows with no Reynolds stress, such as free convection.) 

Although the conceptual distinction between conditional eddies as mathematical 
entities and coherent structures as physical entities has been emphasized, i t  should 
not be inferred that conditional eddies cannot detect coherent structures. In fact, the 
conditional eddies are expected to correspond to the average physical structure very 
closely when the coherent structures are characterized by unique sets of values of u 
and/or d that are characteristic solely of that structure. 

The CELK eddy has certain properties that follow from the coincidence, separation 
and reduction properties of the probability density functions for turbulence 
(Lundgren 1967 ; Papoulis 1984). They are as follows : 

lim (u’l u ,  d )  = u ,  

lim (u ’ lu ,  d )  = (u’), 

X ’ L X  

(x’--xI + 02 

((u’ I u> d)) = (u ’ ) ,  

<u’ I u, a‘> I u> = (u’ I u), 
((u’ I u, d> I d) = (u’ I d>. 

(13) 

(14) 

The coincidence property, equation (lo), follows from the fact that u’ --f u as x’ --f x, 
and u has a fixed value under the conditional-average operator. The separation 
property in (11)  assumes that u‘ becomes statistically independent of u and d when 
x’ is far removed from x. The reduction properties in (12)-(14) follow from the 
definition of conditional probability (Papoulis 1984). 

In (12), (13) and (14), it  is convenient to interpret (u‘ I u, d )  as a deterministic 
function of the random variables u and d. The outer average in (12) averages over all 
possible values of u and d, resulting in the unconditional average of u’. The 
conditional average in (13) averages over the set of realizations in which u is fixed, 
but d is not fixed, resulting in the conditional average of u’ with u given. 

The operations of conditional averaging and differentiation may be interchanged 
because they are linear. Then, the gradient of the conditional-eddy field is equal to 
the conditional average of the deformation tensor, 

Since dii = 0 for incompressible flow, 
incompressible flow is solenoidal, 

(15a) 

= ( d & ) ~ ,  d) .  (156) 

( 1 5 b )  shows that the conditional-eddy field for 

This equation is analogous to Lundgren’s (1967) divergence property. Similarly, it is 
apparent from (15b) that the vorticity and rate of strain of the conditional-eddy field 
are equal to the conditional averages of the vorticity and rate-of-strain of the 
turbulent field, respectively. From (15b),  (10) and ( 1  1 )  it is easy to see that (d, 1 u, 
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d )  also possesses separation and coincidence properties, from which it can be inferred 
that the conditional vorticity approaches the given vorticity as x’+x, and so 
on. 

Finally, i t  must be noted that any unconditional moment involving the product of 
u’ and/or its derivatives with any function Q(u,  d)  can be obtained from the 
statistical information contained in (u’ I u,  d )  by averaging: 

By setting Q equal to u or d, (17b) and (18) show that the CELK eddy contains 
the structure of the two-point spatial correlations between u and u’, u and d‘, u’ and 
d, and d and d‘. While the structure of these correlations can in general be obtained 
exactly from (u’ I u,  d )  by averaging, the converse does not follow : i t  is not possible, 
in general, to obtain the conditional average exactly from the correlation functions. 
However, certain random processes do allow exact calculation of the conditional 
average from the correlation function. Joint normal processes are the best known 
example (Papoulis 1984). We shall also see that it is possible to approximate the 
conditional average in terms of the correlation functions. 

2.2. probability density of the kinematic statp 

Conditional averages must be considered in conjunction with the probability of the 
conditional event. The conditional average describes the spatial structure of the field, 
and the event probability describes the frequency with which the event occurs, The 
latter is not the same as the frequency with which the structure occurs, because a 
single coherent structure may have many events, both similar and different, 
associated with its field. Thus, a hairpin vortex has vorticity pointing in one direction 
on one leg, but in the opposite direction on the other, and either condition is a 
legitimate event characterizing the spatial structure of the hairpin. 

The natural combination of the conditional eddy and the probability density is 
contained in the equation for the one-point probability density 

(19) f J u ,  x, t)dv = Prob{u d u ( x ,  t )  < v-tdu}], 

wherein the conditional averages (u’ I u )  and (u’u’ 1 u )  always appear multiplied by 
f ,  (Adrian 1975) :? 

(This equation was derived from Lundgren’s (1967) original equation by recasting 
the terms involving the two-point probability density function into two-point 
conditional averages.) One sees conditional averages occurring in the viscous term 
and in the term representing the pressure. The commutivity of the operations of 

7 We shall use the notation (u’IE”), (u’l u )  and (u ’ lu)  interchangeably, and likewise for 
(u’lu, d) ,  (u’ lEu,d) aud (u’ lv,  A ) .  
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differentiation and ensemble averaging implies that the derivative of the conditional 
average (u' 1 v )  in the viscous term equals the conditional average of the derivative. 
Hence, the entire term represents the best mean-square estimate of the net viscous 
force per unit mass given that the velocity of the fluid has the value v at  the point 
x. Likewise, the pressure term represents the conditionally averaged pressure forcc 
per unit mass given that the velocity is v a t  x. The conditional average (u'u'l V )  is 
the best mean-square estimate of the Reynolds stress a t  x'. 

Equation (20) demonstrates the clear link between conditional eddies and the 
closure problem for turbulence. and it provides a straightforward method of 
interpreting the dyriamical implications of conditional-eddy structure. 

In  this section we shall derive for incompressible, constant-property turbulent flow 
the equation governing the probability density function for u and d, as defined 

(21) 

by 
f,,,(v, A ;  x, t)dvdA = Prob{v < u ( x ,  t )  < u f d v .  A < d ( x ,  t )  < A + d A } .  

Following Lundgren (1967) the derivation begins with the identity 

( S ( U ( X ,  t)-v)S(d(x, t ) - A ) )  S ( U - U ) ~ ( ~ - A ) ~ , , . ( U :  d ;  X, t ) d u d d  (22n) 

(226)  

s 
=f,,,(u, A ;  x, t ) .  

The time derivative of f,,, is calculated from ( 2 2 6 )  : 

f,,, = ( ~ ( u - u ) S ( ~ - A ) + ~ ( U - U ) S ' ( ~ - A ) )  (23 a )  

a a 
= -- (z i i  S(U - V )  6(d- A ) )  - __ (2, S(U-  U) 6(d- A ) )  avi adij 

(23c) 

( 2 3 4  
a a 

= --{(%I avi *> A)f,,,(K A)}-&(di j l  0, 4f, , .(v,  4 1 .  

Equations (23u-c) are obtained by obvious manipulations. Equation (23 d )  uses the 
relation 

( r i 6 ( ~ - ~ ) 6 ( d - A ) )  = ms(u-v)S(d-d)f , , , , , ( l i ,  U, d ;  X, t)dUdudd ( 2 4 ~ )  s 
= J41.,,,,(u. 0, A ;  x, t )  d l i  (24 h )  

wherein f ( u l  u, A )  is the conditional probability density of u given u = v and d = A ,  
defined by 

( 2 5 )  f P l 0 ,  4 =fu, , ,&,  u ,  A ;  x, t)/f,,,(u, A ;  x, t ) .  
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The conditional average is found from the conditional density, 

R. J .  Adrian and P.  Moin 

( z i l u ,  A )  = r i f(zi lu, A)dzi. (26 )  I 
A relationship similar to (24d) is also used for ( d i j  S(u- u )  S(d- A ) ) .  

constant-property Navier-Stokes equation 
The rates of temporal evolution of u and d are governed by the incompressible 

1 ap adik u . = - u  d ---+v- 
paxi  ax, k Zk 

the continuity equation 
dii = 0,  

and the derivative of (27) 

where the pressure may be written as 

$),-P 1 ___ d‘ d’ dx’ 
4% Ix’-xl I r n  rnz 

(27 

in an unbounded turbulent flow. The conditionally averaged values of ui and d i j ,  
obtained by averaging equations (27) and (29), are 

a (d i j  I u, A )  = - v, lim (d& I v ,  A )  - A,, di, 
x’ -+ x 

Equation (23d )  plus (31) and (32) constitute the complete equation for f,,,. The 
conditional acceleration (u  I v ,  A )  depends upon the conditional viscous stress and 
the conditional pressure stress. The stresses have been expressed in terms of (d‘ 1 v, 
A )  and (ad‘ 1 v ,  A )  which, in turn, can be written in terms of the conditional eddy, 
given the local kinematics, 

a 
<d;j I u, A )  = 7 (u; I u,  4, axj t 33) 

and the kinematically specified conditional Reynolds stress 

These conditional averages cannot be calculated from fu,d,  and they constitute the 
essential closure problem for the f,, equation. (Conditional Reynolds stresses of the 
form (u;  u i  I u )  have been measured by Tung 1982.) 

The differential equations for any statistical moment involving u or d can be 
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derived from the equation for f,,d by multiplying by the appropriate quantity and 
integrating, as in Lundgren (1967). I n  particular, the evolution equations for the 
mean flow, the Reynolds-stress tensor, the turbulent viscous dissipation, and the 
mean-square vorticity can each be derived directly from the equation for f,,,. These 
moment equations encompass all current second-order closure models of turbulence. 

Closure of the equation for f,,, requires approximation of (u’ 1 U, d )  and (u’u’ 1 U, 
d )  in terms of fu,, or lower-order moments derivable from it. Since the equations 
governing the single-point moments that are the variables in all second-order closure 
models (kinetic energy, Reynolds stress, dissipation, mean-square vorticity, etc.) can 
be derived from the equation for fu ,dr  but cannot be derived from any simpler 
probability density, it  follows that the problem of second-order closure ultimately 
reduces to the approximation of (uf I u,  d )  and (u’uf 1 u,  d ) .  That is, the unclosed 
terms in the moment equations would be closed by approximations to (uf I u,  d> and 
(u’u’ 1 u, d )  which would close the probability-density-function equation. Thus, all 
closures of second-order moment equations implicitly involve approximations of the 
CELK eddies and their Reynolds-stress counterparts. 

Since the deformation tensor d ( x )  can always be obtained from the velocities a t  
two points by taking the limit of (u, - -u1) / (x2  - x,) as x1 and x2 approach x, it is clear 
that  the CELK event {u, 4 is a subset of the general two-point velocity event {u l ,  
u,}, where u1 and u, are evaluated at arbitrary points x1 and x p .  I n  terms of the 
closure problem for the Lundgren-Monin p.d.f. hierarchy, we may think of {u, 4 as 
a one-and-one-half point event which defines a p.d.f. f,,, whose information content 
lies between that of the one-point p.d.f. and that of the full two-point p.d.f. Closure 
of the p.d.f. hierarchy a t  the one-and-one-half point level may be a useful approach 
to turbulence modelling in that it eliminates two-point information that is not 
needed for generalized second-order-moment models. 

The CELK eddies play the role of supplying the information about the spatial 
structure of the turbulent flow. This information is sufficient to close the equations, 
and it is precisely the type of information that has been sought in the study of 
coherent structures. Hence, CELK eddies provide a means of incorporating 
phenomenological coherent-structure information into a statistical theory of 
turbulent transport. 

3. Linear estimation of conditional eddies 
Direct calculation of conditional eddies from experimental or numerical data is 

made difficult by the relatively high dimension of the conditional events, N = 3 in 
the case of E, and N = 12 in the case of Eud. The high dimension has two 
ramifications. First, the probability of an event cell in the space of all events becomes 
small when N is large. If the probability of a one-dimensional event is of order Po, the 
probability of the multidimensional event is of order Po”. Thus, when the event 
windows dv or dA are made small for the sake of highly specific conditioning, the 
value of Pf becomes extremely small for CELT eddies and intolerably small for 
CELK eddies. To generate a number of samples sufficient to yield statistically stable 
estimates of the conditional averages, the data base must be correspondingly huge. 
For example, if lo4 samples satisfying the conditional event are needed for averaging 
and Po = 0.1,  the total number of samples is of order lo’ for one conditional event of 
a CELT eddy, and of order 10l6 for a CELK eddy. Computation of CELT eddies is 
feasible with current data bases, but direct computation of CELK eddies is clearly 
beyond existing capabilities. 
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The second consequence of high dimensionality is the difficulty which arises in 
selecting a particular conditional event from the large space of possible events. This 
is a natural consequence of using a highly specific type of event, and i t  means that 
the CELK eddy might have to be evaluated a t  a very large number of points in the 
event space to achieve an unbiased picture of the flow structure. 

The sampling problem can be surmounted by application of linear stochastic 
estimation methods to the conditional average (Adrian 1975, 1979). The linear 
estimate permits evaluation of the conditional average for any value of the 
conditional-event vector in terms of simple correlation functions without recourse to  
conditionally sampling the data. The event selection problem is addressed effectively 
by combining linear estimation with the probability density function of the events. 
This allows determination of the frequency of occurrence of a structure as well as its 
contribution to various turbulence statistics (e.g. Reynolds shear stress or kinetic 
energy). 

3.1. Estimation procedure 

In  linear stochastic estimation, the conditional average is approximated by a linear 
function of the given data, and the coefficients of the approximation depend upon 
second-order correlations between the data and the variable to be estimated. 
Nonlinear estimation retains higher-order terms in the approximate expansion of the 
conditional average, and the coefficients depend upon higher-order correlations 
(Tung & Adrian 1980). Linear estimates of (u‘ 1 u )  predict that the conditional eddies 
of isotropic turbulence are vortex rings centred on u(x ,  t )  (Adrian 1978, 1979). Linear 
estimates of the structure of turbulent pipe flow by Hassan (1980) and Hassan et al. 
(1987) predict large eddies with azimuthal vorticity. Nithianandan’s (1980) and 
Nithianandan, Jones & Adrian’s (1987) linear estimates of the conditional average of 
two-dimensional velocity given thc pressure fluctuations (u(x ’ ,  t )  1 p ( x ,  t ) )  in an 
axisymmetric shear layer indicate the usual shear-layer pattern of transverse 
vortices, as do Tung’s (1982) and Tung et aZ.’s (1987) estimates of ( u ( x ’ ,  t )  1 u(x ,  6 ) )  in 
a high-Reynolds-number plane turbulent shear layer. Linear estimates of the 
conditional pressure field ( p ( x ‘ ,  t )  I u(x ,  t ) )  in an axisymmetric shear layer performed 
by Chang et al. (1985) show regions of low pressure in the vortex cores separated by 
regions of high pressure in the stagnation-point flows on the braids separating the 
cores. 

Extensive comparisons of measured conditional averages and their linear estimates 
in each of the aforementioned studies indicate that the estimates describe the large- 
scale structure of the conditional eddy with good accuracy. Evaluations of the 
contributions of higher-order terms in non-linear estimates show that the accuracy 
of the linear estimate is due to the relatively small magnitude of the higher-order 
terms for probable values of the data (Tung & Adrian 1980; Hassan 1980; Hassan 
et al. 1987). That is, the large values of the data that are needed to create significant 
nonlinear effects occur with low probability. 

When estimating the conditional average, it is convenient to note that specifying 
the value of afluctuation at x is statistically equivalent to specifying the value of the 
total quantity, since the mean value is a non-random number. Also, estimating the 
conditional average of the total is equivalent to estimating the conditional average 
of the fluctuation, since the mean can always be added to the conditional fluctuation. 
The estimation equations, especially those for nonlinear estimates, simplify 
considerably when Conditional averages of fluctuations are estimated in terms of 
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fluctuating data. Hence, throughout this section u and d will represent zero mean 
fluctuations unless otherwise stated. We will also suppress the time dependence in 
the arguments of our variables since all variables will be evaluated a t  the same points 
in time. ($pace-time conditional averages and their mean-square stochastic estimates 
are obvious generalizations that will not be considered here.) 

The CELK eddy is a function of the data u ( x )  and d(x) .  It is approximated by 
expanding (u’ I zt, d )  in a Taylor series about the state u = 0 and d = 0. The constant 
term in the expansion vanishes because we are approximating a zero mean 
fluctuation. Neglecting terms of order two and higher yields the linear estimate of 
(u; I u, d> 

$ii = A,(x’, x ) ~ ~ ( x ) + B , , ~ ( x ’ ,  x )d j k (x ) ,  i , j ,  k = 1 ,  2, 3, excludingj = k = 3. (35) 

The estimate excludes d,, because it depends linearly on d,, and d,, through t,he 
continuity equation. (It can be shown that the use of linearly dependent data leads 
to non-uniqueness in the solutions for A and B,  although the estimate continues to 
be unique. 

The estimation coefficients from the Taylor series expansion are unknown, and 
must be determined by another means. They are found by minimizing the mean- 
square error 

e, = ( ( (ui lu ,  d)--&;)’) (36) 

for i = 1, 2, 3. Note that ei is the error averaged over all possible states of the 
conditional event. Minimization of ei requires 

ae.  aei t - 0 ,  -- - 0, 
i ,  I ,  m = 1, 2, 3 except 1 = m = 3 

(no summation i )  
- _  
3 4 1  aBil, 

(37) 

Differentiating (36) according to (35) and (37) yields 

( ( ( ~ ; I ~ , d ) - d ; ) ~ l ) = 0 ,  i , l =  1 , 2 , 3  (38 a)  

( 3 8 b )  

and 
( ( ( U ; ] U ,  d)-&;)d,,> = 0 ,  i ,  I, m = 1, 2, 3 except1 = m = 3, 

showing that error must be statistically orthogonal to each of the data. This 
Orthogonality Principle is used widely in linear estimation (Papoulis 1984), and it is 
readily generalized to nonlinear estimation. 

Substituting (35) into (38), carrying out the indicated averaging operation and 
rearranging yields three sets (i = 1 ,  2, 3) of eleven linear algebraic equations for the 
thirty-three independent coefficients contained in A,, and Bijk : 

Aij(U,U1)+B,jk<d,ku,) (UlU:), 1 i,j, k ,  l , m =  1,  2, 3 (39a) 

A,j(u,dl,)+Bijk(d,,d,,) = (dlmui) , )  except 1 = m = 3 , j  = k = 3. (39b) 

These equations pertain, in general, to inhomogeneous, incompressible turbulence. 
The correlations in the left-hand side of (39) are single-point correlations at  x, and 
those on the right-hand side are two-point correlations computed a t  x and x’. 

3.2. Properties of the linear estimate 

The linear estimate of the conditional average defined by (35)  and (39) satisfies many 
of the same properties as the conditional average itself. Specifically, if u’ and u each 
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have zero mean value (implying that d and d a r e  also zero-mean random variables), 
then 

aii: 
lim 6; = ui(x) ,  lim = d . . ( x ) ,  23 lim 2;; = 0; (40a, b, c )  
x’ ’X x’ ,,ax;. Ix’-x/ + m 

(6;)  = 0, (41) 

(4;lu) = A i j u j + B i j k ( d j k ) u ) ,  (42) 

(6; d) = Aij  ( u j  I d) +Bijkdjk, (43) 

(46c, d )  

The coincidence properties in (40a,  6 )  follow from the orthogonality principle and 
the fact that the conditional data contain the quantities being averaged. The 
separation property in (40c) follows immediately from the form of the solutions for 
A and B and the assumption that the two-point correlations in (39a, 6 )  vanish for 
Jx’-xxJ+co. The reduction properties in (41), (42) and (43) result from directly 
averaging ( 3 5 ) .  Equation (44) states that  the deformation tensor of the linear 
estimate is equal to the linear estimate of the deformation tensor. It can be shown 
by direct calculation of the quantities on each side. As a consequence, the 
deformation field of the linear estimate dij has properties that parallel those of the 
deformation fiel$ of the conditional average. The coincidence property in (40b) is one 
of these, and d6 also satisfies a separation property analogous to (40c). The 
divergence property in (45) follows from (44) and the assumption of incomgressibility. 

Equations (46ad)  state that  moments involving the estimates 2 and d‘ and first- 
order powers of u and d result exactly in the corresponding moments involving 
(u’ 1 u, d), (d‘ 1 u, d) and first powers of u or d. The equations correspond to (17) and 
(18) for Q = u or Q = d. The linear estimate cannot guarantee that moments 
involving u or d‘ and nonlinear functions of u or d will generate the correct moments. 
Thus, for example, the two-point, second-order spatial correlation tensor can be 
found from u ,  but the two-point, third-order tensor (ui u3 uk )  is not in general equal 
to ( ? 2 U j U k ) .  

3.3. Linear estimation for  homogeneous turbulence 

For the case of homogeneous turbulence the linear estimate is conveniently expressed 
in terms of x‘ = x + r : 

u’ = u ( x + r ) .  (47) 

Each of the coefficients in (39) is expressed in terms of the two-point spatial 
Correlation tensor 

(48) R d r )  = (%(X) u,(x + 4) 
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and its derivatives. The necessary relationships are 

Equations (39a, 6 )  form an 11 x 11 system whose coefficient matrix is the same for 
each component of ui, i = 1 ,  2, 3. All elements of this matrix involve the two-point 
spatial correlation and its derivatives evaluated at zero separation. The inverse of the 
matrix only needs to be evaluated once, independent of r and i. Spatial dependencies 
of the estimation coefficients are determined entirely by the two-point spatial 
correlations on the right-hand side of (39). 

4. Homogeneous turbulent shear flow 
The linear estimation procedure described in $3  has been used to extract the 

structure of conditional eddies given local kinematics from a numerical simulation of 
homogeneous turbulence created by uniform mean shear. Recent work by Rogers & 
Moin (1987) demonstrates the existence of hairpin structures in homogeneous shear 
flows in addition to inhomogeneous shear flows. Hairpin eddies have been previously 
associated with wall-bounded shear flows by numerous authors, beginning with 
Theodorsen (1952). In numerically simulated channel flow (Kim & Moin 1986) 
conditional averages based on Willmarth & Lu’s (1972) quadrant analysis clearly 
indicate two types of hairpin structures surrounding burst events : one with its head 
oriented upwards and downstream of the legs, and the other with its head oriented 
downwards and upstream of the legs. Similar hairpins have been found in 
homogeneous turbulent shear flow by Rogers & Moin (1987), and from the 
observations of hairpin eddies with and without walls, they concluded that hairpin 
structures are a prevalent, if not universal aspect of all turbulent shear flows. 

The ubiquitous nature of hairpin vortices in shear flow makes it possible to 
investigate the relationship between linear estimates of conditional eddies and a 
reasonably well-defined coherent structure. 

4.1. Direct numerical simulation 
The data base used here is the direct numerical simulation of the three-dimensional, 
time-dependent incompressible Navier-Stokes equation described in Rogers & Moin 
(1987). The calculations were performed on a grid of 128 x 64 x 64 points using 
Rogallo’s (1981) code and Fourier-spectral methods for representing the velocity 
field in space. The mean flow was in the 2,-direction, and the mean shear was in the 
2,-direction : 

The computational box, figure 1, was 4n x 27t x 27t cm in dimension, with X = 10.0 s-l 
and v = 0.045 cm2 s-l, corresponding to the lower Reynolds number reported in 
Rogers & Moin (1987). The properties of this flow are summarized in table 1.  The 
value of the dimensionless shear SLI l9 , /q  is comparable to that found in the 

u, = Sx,. (52) 
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= sx, 

XS 

FIGURE 1. Computational domain for homogeneous shear flow 

Numerical 
data  

St = 2.0 

14.2 
22.2 
2.66 
3.14 

(0.43, 0.26, 0.31) 
-0.55 

(0.97, 1.02, 0.82) 
5.23 
3.35 
0.68 

Champagne 
et al. 

(1970) 
St = 3.3 

250 
1100 

2.0 
5.8 

(0.47, 0.25, 0.28) 
-0.50 

TABLE 1. Parameters of the  numerical simulation (Rogers & Moin 1987) 

experiment of Champagne, Harris & Corrsin (1970), and all computed second-order 
statistics compare favourably with the experimental data, despite the relatively 
small Reynolds number of the simulation. (Lll,l and A,,,, are the longitudinal 
integral scale and the Taylor microscale respectively, Ax is the computational grid, 
and q2 is twice the turbulent kinetic energy.) 

4.2. Estimated CELK eddies 

The linear estimation procedure in (35) and (39) has been used to calculate 
conditional eddies given the local kinematics from the two-point spatial correlation 
tensor of the velocity field. Derivatives of R, in (49), (50) and (51) have been 
calculated by pseudospectral methods, and the estimation coefficients Ai j ( r )  and 
Biik(r) have been evaluated by solving (39) for each r-value on the grid. 

4.2.1. Relationship to coherent structures 

Figure 2 shows the total (mean plus fluctuating) vorticity vector field of a flow 
realization projected on to an (x3, 8)-plane inclined at 0 = 45" to the mean flow 
direction. Viewing the vorticity vectors in this plane enables one to see a large 
number of hairpin eddies because the probability distribution of the angle of 
inclination of the vorticity peaks a t  0 z 45" and B z - 135" (Rogers & Moin 1987). 
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S 

t 

FIGURE 2. Vorticitg vector field of homogeneous shear flow projected onto a plane inclined a t  0 = 
45' (see figure 1) and passing through x1 = 0. The conditional event Eu,d is evaluated a t  points A, 
B and C. The numbers on the axes indicate grid points (see table 1). Kote that the spacing of the 
tic marks on the vertical axis is equal to 42Ax.  

Several hairpins are contained in figure 2. In this and all subsequent vector plots the 
numbers on the coordinate axes indicate the grid points (see table 1). 

To study the relationship between instantaneous coherent structures and linearly 
estimated CELK eddies, a hairpin was selected from figure 2, and the flow conditions 
(u, dj a t  points labelled A, B and C were used to calculate the Conditional eddy. Point 
A is near the centre of the vortex tube a t  the head of the hairpin, and its fluctuating 
vorticity is w ( x )  = ( -  1.22, 1.94, - 15.45) s-'. The mean vorticity is SZ = (0, 0. - 10) 
s-l. The total vorticity is dominated by a strongly negative w,-component, 
corresponding to the nearly horizontal total vorticity vector a t  the top of  the hairpin 
a t  Point A. The velocity ~ ( x )  = (-4.50, 2.29, -0.65) cm s-l lies in the second 
quadrant of the (ul, u,)-plane, and the largest and smallest elements in the 
fluctuating deformation tensor at point A are d,, = 13.2 s-l and d,, = 0.4 spl ,  
respectively. 

Figure 3 shows the vorticity field o f  the linear estimate given the conditions a t  
point A 

&' = V' x G'. 

plus the mean vorticity 52. Projection into a 45" plane reveals a characteristic hairpin 
pattern very similar to the realization in figure 2. 

(53)  

Vortex lines computed from 

dr (&'+a) 
dl '- I&'  + 521 (54) 
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are shown in figure 4. In  this depiction the total vorticity field gives the impression 
of a vortex sheet that has been perturbed upwards. For comparison, figure 5 shows 
the vortex lines computed by Kim & Moin (1986) by conditionally sampling the 
velocity in numerically simulated channel flow. They used a second-quadrant 
detector ( '  QD-2 ') a t  y+ = 100, wherein the instantaneous Reynolds stress exceeded 
ten times the mean. The similarity between the vorticity of the linearly estimated 
field in figure 4 ( a )  and conditionally sampled field is striking. It was also shown in 
Kim & Moin (1986) that other detector events such as the variable-interval space- 
averaging (VISA) event yielded related structures, although the VISA event 
appeared to  occur in a region between an upwards and a downwards depression of the 
vortex sheet. This and our recent application of linear estimation in channel flow 
leads us to conclude that the linearly estimated CELK eddy is close in form to the 
conditional averages that have been most commonly observed in the past. 

4.2.2. Effect of the con,ddtions 

The kinematic conditions a t  Point B in figure 2 correspond to the left leg of the 
upwards hairpin. The fluctuating vorticity is large and negative in the xl- and x2- 
directions, and it nearly cancels the mean vorticity in the x,-direction: o(x) = 
(-7.76, -36.58, 10.2) s-l. The velocity vector u ( x )  = (-0.94, -0.53, -0.53) cm s-l 
has ul- and u,-components that  are weak relative to those a t  Point A. 

The conditions a t  Point B produce a linearly estimated CELK eddy that 
emphasizes the left leg of the hairpin, figure 6. The point r = 0 now appears to be 
centred on the left leg a t  about the same point as the location of Point B relative to 
the instantaneous realization of the hairpin in figure 2 .  The left leg in figure 6 ( a )  is 
slightly more pronounced than in figure 3 because specifying data corresponding to 
the left leg yields a better stochast'ic estimate of the flow in this region (i.e. smaller 
mean-square error). However, the right leg is significantly less pronounced than in 
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I I?- - 
I I 

r3 

FIGURE 4. Vortex lines of’the CELK eddy for the conditions at Point A in the homogeneous shear 
flow. (a )  Oblique view; ( b )  side view; ( c )  top view. 
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FIGURE 5 .  Vortex lines of a conditional ensemble average based on a quadrant-2 conditional 
event in turbulent channel flow. (a )  Oblique view; (b )  side view (Kim & Moin 1986). 
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FIGURE 6. Linearly estimated total vorticity field of a CELK eddy evaluated for the conditions at 
Point B in figure 2 .  (a )  Vorticity projected onto the plane inclined a t  0 = 45' (see figure 1) and 
passing through point B ; ( b )  vorticity projected onto the ( r l ,  ?,)-plane passing through Point R. 
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FIGURE 7 .  Linearly estimated total vorticity field of a CELK eddy evaluated for the conditions a t  
Point C in figure 2. Vorticity errors on a 0 = 45" plane. (a )  Estimation given u ( x ) ;  (b )  estimation 
given u ( x )  and d(x) .  

figure 3. This loss of structure is the consequence of reduced correlation between the 
flow in the region of the right leg and the data a t  r = 0. In general, as Irl increases 
the flows predicted by the linear estimates must attenuate if the two-point spatial 
correlation functions decay. A similar effect is also observed for the conditional 
average, and it is merely a consequence of loss of correlation. It should be noted that 
the pattern in figure 6 ( a )  could also represent the right leg of a downwards-oriented 
hairpin which would also possess vorticity with the same direction as the left leg of 
an upwards hairpin. 

In figure 6 ( b )  a side view of the linear estimate around Point B shows that the 
pattern corresponds to a bundle of vortex lines oriented at  approximately - 135" to 
the flow. It is noteworthy that while the vorticity vector a t  x is inclined at  - loci", 
the main structure of the vortex bundle is inclined at  about -135", the angle of 
maximum probability found by Rogers & Moin (1987). 

At Point C the velocity is relatively small, ~ ( x )  = (0.96, -0.38, 0.23) ern s-l and 
the fluctuating vorticity is a cornbination of a moderate total o,-component coupled 
with a strong fluctuation in the streamwise direction : w ( x )  = (6.40,2.19, - 12.84) s-l. 
The complete deformation tensor of the fluctuating field is 

4.53 10.33 4.02) 
-2.51 -9.51 -3.56 

1.83 2.84 4.98 
(55) 

From figure 2 ,  Point C appears to be midway between the head of an upward hairpin 
and the head of a downward hairpin. 

To assess the extent to which specification of the full kinematic state Eu,d improves 
estimation of the local structure, the flow around Point C has been linearly estimated 
given u in figure 7 ( a )  and given {u,  d) in figure 7 ( b ) .  The vorticity vectors in figure 
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7 ( a )  are computed from a 3 x 3 system of equations for the linear estimation 
coefficients, and they show relatively little structure. In  contrast, the linear estimate 
in figure 7 ( b ) ,  computed from the full 11 x 11 system, indicates the presence of two 
hairpins configured head-to-head. The point r = 0 is located midway between them, as 
expected from figure 2. We conclude that under certain conditions the information 
contained in d ( x )  is necessary to produce a clear, representative pattern for the local 
field, in agreement with the obsorvation of Dittcr (1987). 

An extreme situation in which the deformation tensor provides essential 
information occurs when the velocity vanishes a t  x. Then, x is a critical point of the 
vector field. The linearly estimated field of the CELT eddy vanishes identically, and 
the field of the CELK eddy reduces to that of a CELD eddy. The CELD flow pattern 
corresponding to an arbitrarily chosen pure two-dimensional strain, u ( x )  = 0 ,  
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d,,(x) = 20, d,,(x) = -20, is shown in figure 8 ( a ) .  In the immediate vicinity of x the 
flow is a plane stagnation-point flow. Farther from x the pattern is that  of the heads 
of two hairpin vortices located on either side of x (figure 86, c). The stagnation point 
occurs where the induced motions of the vortices cancel. Such points presumably 
have high positive pressure fluctuations associated with them. They illustrate the 
‘ splat ’ mechanism for generating pressure fluctuations discussed by Bradshaw & 
Koh (1981), and they are potential sites for the creation of acoustic emission. 

It is noteworthy that vorticity-fluctuation vectors depict ring vortices rather than 
hairpins (figure 8 4  (see Falco 1977, and Moin, Leonard & Kim 1986). In this regard, 
Ditter (1987) has found that the addition of a mean shear flow to the vortex ring 
found by linear estimation of isotropic turbulence yields a hairpin vortex. The mean 
vorticity adds to the vorticity of one side of the ring vortex and cancels the vorticity 
on the other side. Thus, the relative strengths of the fluctuating vorticity and mean 
shear (and the frame of reference) are important parameters that  affect the 
appearance of organized structures in this flow. 

Comparing figures 3, 4, 6, 7 and 8, we see that the effects of selecting a specific 
event are two-fold. First, if two conditional events each occur within the same 
structure, then the effect of the event is to ‘focus’ the linear estimate on a region 
centred upon the point a t  which the event occurs, on average. The difference between 
Points A and B in figures 3 and 6 illustrates this behaviour. Secondly, if any two 
conditional events are not part of the same structure, then a new structure can be 
revealed. The stagnation-point flow in figure 8 illustrates a new mechanism that is 
not clearly evident in the individual hairpins. Physically, if a flow is dominated by 
a single characteristic structure, then one expects to see only one conditional 
structure, or perhaps interactions between the structures. It should be emphasized 
that without additional evidence (which would depend upon the specific flow) thc 
estimated eddies must always be interpreted as averages that may not coincide too 
closely to any single realization, especially when the flow at x’ is not highly correlated 
with the flow a t  x. 

It should also be noted that different events may be associatcd with different 
phases of a particular interaction, so that it is possible to obtain an evolving picture 
of the flow around the point x by using a proper sequence of values for u(x ) .  (The 
movie by Adrian, Jones & Hassan (1979) used time-series measurements of ul (x ,  t )  
and u2(x, t )  to produce a series of linearly estimated flow fields as a function of time 
in turbulent pipe flow.) 

4.3. Reynolds-shear-str~ss events 

The conditional eddy together with the probability density function of the 
conditional event are both necessary to describe coherent structures, because the 
former describes the flow geometry and kinematics associated with an event, while 
the latter describes the relative frequency of that event. Without an a priori criterion 
for selecting a particular event one should, strictly, examine all possible events. 
Practically, it is necessary to devise a procedure that limits the number of interesting 
events to a feasibly small set. A natural approach to this problem is to select evcnts 
on the basis of the amount that they contribute to quantities of particular physical 
interest such as kinetic energy, Reynolds shear stresses, or dissipation. The method 
is based on the equation for the unconditional mean value 
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FIGURE 9. Events making the greatest contribution to  (u,u,).  (a )  Contours of jU,Jul ,  v,); 
( b )  contours of v1 vz fu,U,(wl, vz) : q = 1.94 cm s-'. 

which indicates that  the maximum contribution to (Q) is derived from those {u, 4 
events for which the integrand mud is a maximum. Relative maxima may occur a t  
several points in ( u ,  A)-space. We shall refer to the events corresponding to these 
points as maximum contributors. 

In this section the flow structures associated with a maximum contributor to the 
Reynolds shear stress, given by 

(u, u,) = Jvl  W , f u d ( U ,  A ; x, t )  dvdA 

= Jv, w, fu(u;  x, t )  du, 

(57 a )  

(57 b) 

will be investigated. The variables u, d and the associated dummy variables u ,  A will 
continue to represent fluctuations about the mean. In  principle, the points in ( u ,  A ) -  
space a t  which v1 v, fud is a maximum can be determined by straightforward search 
of the numerical solution, provided that the data base is large enough to yield a 
statistically significant population in the pertinent phase-space cells. For the present 
calculation it was desirable to reduce the dimension of (u ,  A)-space to improve the 
statistical stability of the samples. Reduction was accomplished by observing that 
by virtue of homogeneity in the (x,, x,)-plane, the following moments vanish 

(u,d,,) and (u,d,,). Hence, ug, d,,, d,,, d,, and d,, are each uncorrelated with the 
variables u, and u,. While lack of correlation does not guarantee statistical 
independence, it does suggest that u,, d,,, d,,, d,, and d,, are not strongly coupled to 
the events contributing most to  (u,u,). They were therefore ignored, leaving the 
variables ul, u,, d,,, d,,, d,, and d,, to be considered. 

The two-dimensional probability density of velocity for the homogeneous shear 
flow is plotted in figure 9 ( a ) ,  and contours of v1 w 2  f u (w l ,  w,) are shown in figure 9(b) .  
It is seen that maxima occur in the bins centred at (vml, w,,) = ( -  1.65, 1.21) em s-l 
and (1.65, - 1.21) cm s-l. (Note that for a large statistical sample the entire 
probability distribution should be symmetric with respect to reflections in 

( '1u3>? (u,u3>> <u1d13)> <uZd13)> <U1d31)3 <u2d ,1 )>  (uld23)9 <u2d23)> 
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FIGURE 10. Vortex lines of the CELK eddy making the peak second-quadrant contribution to 
(u,u,). Linear estimate using u = (-1.61, 1.21, 0) cm s-l, and d =  0. 

homogeneous shear flow.) The maxima are located in the second and fourth 
quadrants, and they correspond, in this sense, to the sweep and ejection events of 
wall-bounded turbulent shear flow. 

The four-dimensional conditional probability density of deformation fd(dll, d,,, 
d,,, d,, I urn,, vmz) has also been computed. I ts  maximum was found a t  zero 
deformation, indicating that the most probable state of the maximum Reynolds- 
stress contributor is (vl, v,, d,,, d,,, d,,, d z z )  = (vml, em,, 0, 0, 0, 0). 

The flow field of the second-quadrant Reynolds-shear-stress event has been linearly 
estimated using u' = Au+Bd and setting u = ( -  1.65, 1.21, 0), and d = 0. The 
vortex lines in figure 10 reveal a structure very similar to the patterns that were 
associated with hairpins in figures 4 and 5. Total vorticity vectors projected onto 
( r , ,  r,)-planes are shown in figure 11. In  the r ,  = 0 plane the projected vorticity is zero 
a t  every point, indicating that vorticity is perpendicular to the plane. As r, is 
changed, patterns emerge that are clearly identifiable as the legs of a hairpin vortex. 
The projected vorticity reaches a maximum a t  Ir,l = 262 and decreases thereafter. 
The vorticity pattern is symmetric with respect to the r3 = 0 plane, aside from a 
change in its sign. The total pattern of vorticity is consistent with an upwards- 
oriented hairpin vortex inclined a t  about 6' = 55" to the flow. 

The velocity field of the Reynolds-stress eddy is projected onto an ( r z ,  r,)-plane 
passing through r = 0 in figure 12 (a ) .  The vortical patterns on either side of r = 0 are 
cuts through the legs of the hairpin. The vorticity is concentrated in the legs, showing 
that the pattern is more like a vortex tube bent into a hairpin shape than the 
perturbed-vortex-sheet impression given by figure 12. At r = 0 the fluctuating 
velocity vector is a strong flow inclined a t  0 = 143" to the streamwise direction. The 
local instantaneous Reynolds stress produced a t  r = 0 is u l ( x )  uz(x) = -2.0 om2 s-', 
corresponding to approximately 3 (u,u,). The strength of the flow a t  r = 0 is 
associated with ,mutual induction by the vorticity in the head and legs of the hairpin 
vortex. The point r = 0 is located about the same distance below the head of the 
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FIGURE 11. Vorticity field of the CELK eddy making the peak second-quadrant contribution to 
(u luz).  Linear estimate projected onto the (rl,  7,)-plane. (a )  r3 = +2As; ( b )  P$ = -2Az. 

hairpin as it is from the side legs. Hence, the flow a t  r = 0 benefits about equally from 
vortex induction by all parts of the surrounding vortex tube. The consequence of this 
cooperative induction is a negative u,u,-event that  is much stronger than t'he 
positive ulu2 events associated with the weaker return flows on the outside of the 
hairpin. In this way, a net negative value of (u,u,) is produced. 

The velocity-fluctuation field under the head of the conditional hairpin is shown 
projected onto the ( r l ,  r,)-plane passing through r = 0 in figure 12 (6). The head of the 
hairpin is located a t  about r1 = 5Ax, r2 = 5Ax. Fluid is drawn into the hairpin for a 
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significant distance ahead of it. Patterns in the vector field far away from r = 0 are 
subject to sampling-error noise in the two-point spatial correlations, and they may 
not be reliable. 

The fourth-quadrant peak contribution to (u,u,) occurs a t  values of uI and u2 
that  are opposite to those of the second-quadrant event, figure 9 f b ) .  From thc form 
of the linear estimate with d = 0 it is clear that inverting the given velocity vector 
simply inverts all of the vectors in the estimated field. Thus, the conditional eddy 
associated with the fourth-quadrant event is a downwards-oriented hairpin. Rilorc 
generally, the patterns associated with other v,-vu,  values not too far from the 
locations of the maximum contributions are expected to correspond to hairpins 
whose legs are approximately perpendicular to the given velocity (J. L. Ditter 8r. 
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R. J .  Adrian 1988, paper in preparation). A picture emerges in which second- and 
fourth-quadrant Reynolds stresses are generated primarily by groups of upward and 
downward hairpins inclined a t  a range of angles about mean values of approximately 
45" and -135" to the flow. The angular distribution of vorticity in (xl, x,)-planes 
found by Rogers & Moin (1987) indicates how this distribution may occur. 

5. Summary and conclusions 
A new type of conditional eddy has been defined by the conditional average 

(u(x', t) 1 u(x, t ) ,  d(x, t ) )  in which the conditional event specifies the local kinematic 
state at x in terms of the velocity and the deformation. The additional specification 
of the local deformation permits a more precise determination of the fluid motion. 

The equation governing the probability density function of the kinematic state 
f,,, has been derived for constant-property, incompressible flow. All evolution 
equations governing moments defined by u(x, t) and d(x, t) are contained within this 
equation and, in particular, the equations used in turbulence modelling such as those 
governing the Reynolds stresses, mean-square vorticity and dissipation can be 
derived from it. Closure of the equation for fu,d requires approximation of the 
conditional velocity (u' I u,  d). In  this way the probability-density-function equation 
provides a link between coherent flow structures corresponding to the condi tional 
eddies and the modelling of turbulent transport. 

Approximation of the conditional eddies given the local kinematics has been 
accomplished by mean-square stochastic estimation in terms of data linear in 
u(x, t )  and d(x, t ) .  The linear-estimation coefficients are calculated from a simple 
system of linear algebraic equations involving only the two-point spatial correlation 
functions of the velocity. The estimation procedure is an effective method of using 
spatial correlation information to obtain readily interpretable velocity fields 
corresponding to large-scale structures. It avoids time-consuming conditional- 
sampling procedures. 

In  the immediate vicinity of x the conditional events u(x, t) and d(x, t) provide 
information sufficient to estimate the local velocity field by a Taylor-series expansion 
to  first order: 

u,(x',  t) = u,(x, t)+d,,(x, t )  (xj-x,). (58) 

If u(x, t )  = 0, x is a critical point, and critical-point analysis provides further 
information about the local topology of the vector field. The linear stochastic 
estimate (and thc conditional average (u' 1 u,  d ) )  is also a local approximation, but it 
clearly contains more structural information than either of the foregoing analyses. In 
particular, the stochastic estimate contains information about the size, shape, and 
orientation of the local eddies that cannot be inferred from critical-point analysis 
based on a single critical point a t  x. Critical-point analysis does not distinguish 
between topologically equivalent vector fields, whereas the shape information 
contained in the spatial correlation tensor is capable of defining many differently 
shaped, but topologically equivalent, structures. Conversely, two different spatial 
correlation functions can produce topologically different fields given the same critical 
point. While these considerations are an attempt to delineate the differences between 
critical-point analysis and stochastic estimation, they also suggest that  it may be 
useful to specify conditional events a t  the critical points. However, it  should be noted 
that the hairpin structure associated with the maximum Reynolds-stress con- 
tribution arose from a velocity condition a t  a point where d vanished. It should 
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finally be noted that the mean-square error of (54) grows without bound as 
(x'-xx( + co, but the mean-square error of a stochastic estimate is bounded by the 
mean square of the velocity fluctuation. 

Using correlations computed from a direct numerical simulation of homogeneous 
turbulent shear flow, it is found that one conditional-eddy structure characteristic of 
this type of flow is a hairpin vortex. The linearly estimated conditional eddy 
corresponds closely in shape to instantaneous hairpins found in the numerical 
simulation and to hairpins inferred from conditional averages. The linear estimate is, 
therefore, a good approximation of the conditional average on large scales. The large- 
scale structure inferred from the linear estimate is not necessarily sensitive to the 
choice of conditional events. If two different events each occur within the same 
coherent eddy structure, the linearly estimated patterns are merely shifted so as to 
be centred on the points a t  which the events occur, on average. In  some cases, events 
may define a new structure, different from the primary (i.e. most common) 
structure. 

A rational method of selecting events is proposed based on determining the values 
of I(, d a t  which the greatest contribution to  some mean quantity occurs. Using the 
mean Reynolds shear stress as a criterion, it is found that two events exhibit maxima 
in their contributions : a second-quadrant event and a fourth-quadrant event. The 
linearly estimated conditional eddy associated with the second-quadrant event is a 
hairpin vortex inclined upwards and in the streamwise direction a t  about 45' to the 
mean flow, and that for the fourth-quadrant event is a similar eddy inclined 
downwards a t  -135" with respect to the positive flow direction. The patterns 
inferred from the linear estimates indicate that the peak contribution to Reynolds 
stresses in homogeneous turbulent shear flow comes from fluid jetting through the 
region below the head of the vortex in a direction almost perpendicular to the plane 
of the hairpin. This strong jet is a consequence of vortex induction by the opposing 
legs of the hairpin reinforced by induction from vorticity in the head of the hairpin. 
Since hairpins are observed in wall-bounded inhomogeneous flows as well as 
homogeneous shear flow, it is not unlikely that this mechanism for creating Reynolds 
stresses is a common feature of all shear flows. 
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